今日要闻

图像特征提取三大算法

来源: 作者:达人百科 2024-12-23

问达人,WenDaRen最后更新 2024年12月23日,问达人 www.wendaren.com图像特征提取三大算法:HOG特征、LBP特征、Haar特征,具体来说:1、HOG特征方向梯度直方图(Histogram of Oriented Gradient

问达人 www.wendaren.com

图像特征提取三大算法:HOG特征、LBP特征、Haar特征,具体来说:

  

  1、HOG特征

  

  方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。

  

  2、LBP特征

  

  LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显着的优点。它是在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征。

  

  3、Haar特征

  

  Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白 色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻 梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。

2022-05-21 14:11:50
文章标签:

声明: 凡注明为其他媒体来源的信息,均为转载自其他媒体,转载并不代表本网赞同其观点,也不代表本网对其真实性负责。如系原创文章,转载请注明出处; 您若对该稿件内容有任何疑问或质疑,请即联系,本网将迅速给您回应并做处理。邮箱:mail@laishu.com

为您推荐

今日要闻

健康知识

母婴知识

咖啡资讯

美食资讯

美容护肤

星座解读

命理运势

本地资讯

热点资讯